On the Diophantine Equation Fn = x^a \pm x^b \pm 1 in Mersenne and Fermat Numbers

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mersenne and Fermat Numbers

The first seventeen even perfect numbers are therefore obtained by substituting these values of ra in the expression 2n_1(2n —1). The first twelve of the Mersenne primes have been known since 1914; the twelfth, 2127 —1, was indeed found by Lucas as early as 1876, and for the next seventy-five years was the largest known prime. More details on the history of the Mersenne numbers may be found in ...

متن کامل

Pm Numbers, Ambiguity, and Regularity

We introduce the pseudo-m-ary (Pm) number system in which numbers are represented by sums of the form ∑ i≥0 ai(m i+1 − 1). We characterize the Pm representations that are produced by the greedy algorithm and show that they form a regular set. In addition, we show that the set of Pm representations that are the sole representations for their corresponding numbers is also a regular set.

متن کامل

Two-Generator Numerical Semigroups and Fermat and Mersenne Numbers

Given g ∈ N, what is the number of numerical semigroups S = 〈a, b〉 in N of genus |N \ S| = g? After settling the case g = 2 for all k, we show that attempting to extend the result to g = p for all odd primes p is linked, quite surprisingly, to the factorization of Fermat and Mersenne numbers.

متن کامل

On pm$^+$ and finite character bi-amalgamation

‎Let $f:Arightarrow B$ and $g:A rightarrow C$ be two ring homomorphisms and let $J$ and $J^{'}$ be two ideals of $B$ and $C$‎, ‎respectively‎, ‎such that $f^{-1}(J)=g^{-1}(J^{'})$‎. ‎The bi-amalgamation of $A$ with $(B,C)$ along $(J,J^{'})$ with respect of $(f,g)$ is the subring of $Btimes C$ given by‎ ‎$Abowtie^{f,g}(J,J^{'})={(f(a)+j,g(a)+j^{'})‎/ ‎a in A‎, ‎(j,j^{'}) in Jtimes J^{'}}.$‎ ‎In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tamkang Journal of Mathematics

سال: 2021

ISSN: 2073-9826,0049-2930

DOI: 10.5556/j.tkjm.53.2022.3973